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Abstract: Marine cables play an irreplaceable role in securing floating offshore structures. 

The mechanical properties of mooring cables during the mooring process are crucial for 

ensuring the stable operation of floating offshore structures. The mechanical properties of 

mooring cables are primarily influenced by their material characteristics, which are mainly 

reflected in three key parameters: Poisson's ratio, linear density, and elastic modulus. In light 

of this, this study, based on the specific marine environmental parameters of a certain sea 

area, discretizes the mooring cable into a lumped mass parameter model and utilizes a 

time-domain simulation model to analyze the dynamic response of the mooring cable in the 

time domain. This approach further explores the impact of different Poisson's ratios, linear 

densities, and elastic moduli on the mooring mechanical performance of the mooring cable. 

The simulation results indicate that, under the assumption of an infinitely large bulk modulus, 

changes in Poisson's ratio have a relatively minor impact on the mechanical performance of 

the mooring cable. As the linear density of the mooring cable increases, the mooring tension 

experienced by the cable correspondingly increases, and the spatial configuration of the cable 

also undergoes significant changes. Moreover, variations in the elastic modulus significantly 

affect the dynamic configuration and mooring mechanical performance of the mooring cable. 

Keywords: Mooring Cable; Poisson's Ratio; Linear Density; Elastic Modulus; Mooring 

Mechanical Performance 

 

1. Introduction 

In the analysis of deep-sea moored floating bodies, the dynamic response of mooring 

cables significantly influences the behavior of the floating bodies. Within the realm of 

offshore oil development, anchor systems, distinguished by their simplicity, reliable 
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positioning, and economic viability, continue to play a pivotal role in the positioning of 

offshore platforms. The dynamic performance of the anchor line holds substantial 

implications for the design, safety, and operational aspects of the platform's anchoring 

system. The coupled motion of moored floating bodies encompasses three principal 

components: hydrodynamic modeling of the floating body, mechanical analysis modeling 

of the mooring cable, and the coupling algorithm of the mooring cable. As discussed by 

JACOB et al. [1], coupling algorithms can be categorized into "strong coupling" and "weak 

coupling" methodologies. The "strong coupling" approach integrates the dynamics 

equations of the floating body and the mooring line through spring forces (moments) and 

damping forces (moments), thereby forming a multi-degree-of-freedom equation set that 

concurrently resolves the dynamics system of the floating body and the slender rod, treating 

the floating body and mooring cable as an integrated entity for solution. In contrast, the 

"weak coupling" method involves the independent resolution of the dynamics modules of 

the floating body and the flexible rod, with coupling achieved through the exchange of 

displacement and force data. RAN [2] and GARRET [3] have respectively developed 

time-domain fully coupled dynamic analysis programs. KIM et al. [4] incorporated the 

nonlinear mathematical model of polyester cable material into the motion and control 

equations of the mooring cable, conducting a coupled analysis with a deep-sea platform. 

Zhang et al. [5] utilized quasi-static coupling, semi-coupling, and full coupling methods to 

numerically simulate a Spar platform, subsequently comparing the outcomes with 

experimental data. Building upon the asynchronous coupling method proposed by Jing et al. 

[6], Ma Shan et al. [7-9] developed a dynamic coupling analysis program for the interaction 

between deep-sea floating bodies and their mooring and riser systems, which has been 

effectively validated in the dynamic response analysis of single-point mooring FPSOs and 

Spar platforms. This approach falls under the "weak coupling" category, and due to the 

mooring system being resolved as a distinct module, it is particularly amenable to parallel 

computation strategies. Ryu Sangsoo et al [10] undertook extensive experimental and 

numerical calculation research on deep-water offloading buoy systems. 

In summary, a considerable amount of research has been conducted by scholars both 

domestically and internationally on the positioning technology of mooring systems [11-13]. 

Consequently, as the development of offshore oil exploitation continues to advance into 

deeper waters, and in light of the increasing awareness of risks and the heightened demands 

for reliability assessments in offshore oil engineering, the dynamic analysis of mooring 

lines is gaining increasing significance. 

Upon comparative analysis, it has been observed that research on the impact of 

mooring cable material composition on the mooring mechanical performance of such cables 

is relatively sparse both domestically and internationally. Consequently, it is imperative to 
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conduct studies focusing on how the material properties of mooring cables influence their 

mooring mechanical performance. 

In light of this necessity, this paper presents a simulation analysis examining the 

influence of variations in the linear density, Poisson's ratio, and elastic modulus of mooring 

cables on their dynamic characteristics during the mooring process. Valuable conclusions 

have been drawn from this analysis, which hold significant implications for guiding 

specific marine engineering practices. 

2. Theory 

Marine mooring cables are a typical type of slender flexible marine components. 

Before conducting dynamic simulations of these slender flexible marine components, they 

must first achieve static equilibrium to obtain their configuration at static balance. 

Therefore, the calculation for the static equilibrium phase must be performed initially. The 

method for calculating the static equilibrium of slender flexible marine components is the 

catenary method. A brief introduction to this method is provided below. 

 

Figure.1.Schematic diagram of the force on a mooring cable element. 

Consider a small element ds of the mooring cable as the object of study, as shown in 

Figure 1.Here, D and F represent the fluid forces per unit length acting in the vertical and 

tangential directions of the cable element, respectively ;T is the tension in the mooring 

cable; Φ is the angle between the mooring cable element and the direction of the water flow, 

known as the mooring cable angle; dT and dΦ are the small increments of tension and the 

mooring cable angle ΦΦ on the cable element ds; w is the weight per unit length of the 

mooring cable in water, i.e., the weight of the cable after deducting the buoyancy. Since the 

ends of the mooring cable element ds are not actually subjected to fluid pressure, and the 

buoyancy of the cable element is calculated based on its displaced volume with the end 

fluid pressures already accounted for, a correction term should be introduced in the force 

analysis of the mooring cable element. That is, as shown in the Figure 1., the terms 

ρgA(h−z−dz) and ρgA(h−z) should be subtracted from the tensions at the upper and lower 

ends of the mooring cable element, respectively, where A is the cross-sectional area of the 

mooring cable. 
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From Figure 1, it can be seen that when these forces are in static equilibrium, the 

following equation relationships hold: 

In the normal direction of the mooring cable element, 

d ( )d ( cos )dT gA h z w D s   − − = +                  (1)                              

In the tangential direction,   

             d d ( sin )dT gA z w F s − = −                        (2) 

In the aforementioned equations, the premise that the changes in tension dT and the 

mooring cable angle dΦ along the cable element are small quantities is utilized, and terms 

containing higher-order small quantities such as dTdΦ , dzdΦ , etc., are neglected. 

If the apparent tension T′ is introduced, defined as T
，

=T-ρgA(h-z) , then the two 

equations can be respectively represented as: 

 

d ( cos )dT w D s = +                                (3) 

d ( sin )dT w F s= −                                (4) 

For the sake of brevity in expression, the prime symbol on T is omitted. 

The two mooring cable equilibrium equations mentioned above are nonlinear, and it is 

impossible to find analytical solutions. However, under certain conditions, seeking 

analytical solutions is feasible. If the mooring cable is made of a heavier material or the sea 

current velocity is relatively low, the forces acting on the mooring cable are primarily 

dominated by gravity, and the fluid forces can be neglected. Equations (3) and (4) can then 

be simplified to: 

d cos dT w s =                                (5) 

d sin dT w s=                                (6) 

Dividing equation (5) by equation (6) yields: 

 
0

0

0

0
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T




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


  


= = =                        (7) 

Hence, we obtain： 

0
0

cos

cos
T T




=                                (8) 

Among them, T is the tension of the mooring cable when the mooring cable angle is 

Φ0. 
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Substituting equation (8) into equation (5), and integrating from the origin to the cable 

length s0 to s (with the cable angles at the two points being Φ0 and Φ respectively), we can 

obtain: 

0

0 0 0 0
0 02

cos cos
d (tan tan )

cos

T T
s s

w w





 
  


− = = −                           (9) 

Let Th=T0cosΦ0，then we have: 

0

0 0 h
0 02

cos
d (tan tan )

cos

T T
s s

w w






  


− = = −                           (10) 

Along the direction of the cable, we have dx=dscosΦ，Substituting this into equation 

(5), we can obtain: 

0

0 0 h
0 0

0

cos 1 1
d [ln( tan ) ln( tan )]

cos cos cos

T T
x x

w w






  

  
− = = + − +          (11) 

Similarly, along the direction of the cable, we have dz=dssinΦ，Substituting this into 

equation (5), we can obtain: 

0

0 0 h
0 2

0

cos sin 1 1
d ( )

cos cos cos

T T
z z

w w





 


  
− = = −          (12) 

Equations (11) and (12) represent the expressions for the cable length, horizontal 

distance, and vertical distance between any two points during the static equilibrium phase 

of the mooring cable. If the lower limit of integration is taken at the origin, then we have: 

h

1 sin
ln( )

cos

w
x

T





+
=

                          (13) 

If we let a=Th/w，then we have： 

1 sin
ln( )

cos

x

a





+
=

                          (14) 

Hence, we obtain： 

sinh tan
x

a
=

                          (15) 
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1
cos h

cos

x

a 
=

                          (16) 

Thus, equations (10) and (12) can be written as: 

sinh
x

s a
a

=
                          (17) 

(cosh 1)
x

z a
a

= −
                          (18) 

Equations (17) and (18) are known as the catenary equations. 

From equations (17) and (18), we can obtain: 

2 2 2( + )z a s a= +
                          (19) 

( 2 )s z z a= +
                          (20) 

1cosh ( 1)
z

x a
a

−= +
                          (21) 

The above process is the derivation of the traditional catenary method, which is based 

on the assumption that gravity can be neglected compared to fluid forces. This method 

yields a definite analytical solution, and thus it can be referred to as the analytical catenary 

method. The shape of the mooring cable in the static equilibrium phase in this paper is 

derived based on the aforementioned theory. 

3. Establishment of the computational model 

Currently, the most commonly used modeling and discretization method for slender 

flexible components such as marine cables are the lumped mass method, the accuracy of 

which has been widely verified. Therefore, in this paper, the lumped mass method is used 

to model the marine mooring cable. For detailed information on the lumped mass method, 

please refer to the detailed discussion in Reference [14], which will not be repeated here. 

The upper end of the mooring cable is fixed at the sea surface, and the lower end is 

anchored to the seabed, with an initial catenary shape. 

The marine environmental parameters are as follows: the seawater density is 

1025kg/m³, the water depth is 100m, there is no wind or current, the wave direction is 180°, 

the wave height is 7m, the wave period is 8s, and the wave theory is the Dean Stream 

theory. The cable length is 150 m, each segment is 5m, the outer diameter of the cable is 

0.35m, the inner diameter is 0.25m, and the drag coefficient is 1.2.The selection of 
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Poisson’s ratio (0.2–0.5), linear density (0.16–0.18 t/m), and elastic modulus (100–100,000 

Pa) was based on ISO 19901-7:2019 standards for offshore mooring systems [15], which 

recommend these ranges to cover typical material properties of synthetic and steel cables in 

marine environments. 

When calculating the influence of different elastic moduli on the calculation results, 

the linear density of the cable is taken as 0.18t/m, and the Poisson's ratio is taken as 0.2. 

When calculating the influence of different linear densities on the calculation results, the 

Poisson's ratio is taken as 0.5. When calculating the influence of different Poisson's ratios 

on the calculation results, the linear density of the cable is taken as 0.18t/m. To validate the 

simulation model, a comparison between the simulated tension values and experimental 

data from [16] was conducted. The results showed a maximum deviation of 5.2% in 

top-end tension under wave height 7m, indicating good agreement between the numerical 

model and physical experiments. 

4. Computational results 

4.1 The influence of poisson's ratio on the mechanical properties of mooring cables 
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Figure.2.Variation of Effective Tension in Cables with Different Poisson's Ratios. 

Just as shown in Figure 2,upon examining the variation in the effective tension of 

cables under different Poisson's ratios, it is evident that the influence of Poisson's ratio on 

the effective tension of cables is minimal, with the curves of effective tension under 

different Poisson's ratios being highly coincident. However, it is observed that under 

constant sea conditions and with other cable parameters held constant, the effective tension 

at the top end of the cable is consistently greater than that at the bottom end. A comparative 

analysis of the maximum, minimum, and average values of the effective tension along the 

length of the cable reveals that the effective tension increases as one approaches the top end 

of the cable. The distribution of the standard deviation of the effective tension along the 

cable's length indicates that the degree of fluctuation in effective tension varies along the 

cable. Specifically, within the 0-5m range, the fluctuation in mooring tension increases 

linearly; between 5m and 10m, the intensity of tension fluctuations gradually diminishes; 

from 10m to 30m, there is a trend of increasing fluctuation, reaching a maximum at 30m, 

where the degree of fluctuation is not significantly different from that at 5m; from 30m to 

80m, the intensity of effective tension fluctuations decreases progressively, with the tension 

fluctuations being the most moderate at 80m, marking the point of least fluctuation along 

the entire cable; between 80m and 110m, the intensity of effective tension fluctuations 

begins to increase again; from 110m to 120m, the degree of fluctuation remains relatively 

stable; and from 120m to the seabed anchorage, the intensity of effective tension 

fluctuations decreases progressively. 

From the perspective of fatigue damage, the greater the degree of fluctuation in 

effective tension, the higher the propensity for cables to suffer from fatigue damage and 

fracture. Consequently, the sections at 5m and 30m from the top end are identified as the 

most susceptible to fatigue fracture along the entire cable length. In contrast, the section at 

80m from the top end is the least likely to experience fatigue fracture. Therefore, for the 

attachment of scientific instruments to the cable, this location is recommended as it 

minimizes the uncontrolled vibration of the instruments while ensuring their operational 

safety. 
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Figure.3.Bending Moment Variation of Cables with Different Poisson's Ratios. 

From Figure 3,observations of the bending moment variations in cables under different 

Poisson's ratios indicate that changes in Poisson's ratio have a relatively minor impact on 

the bending moment of the cables. Comparing the distribution of the maximum, minimum, 

and average bending moments along the length of the cable under different Poisson's ratios 

reveals that, aside from slight numerical differences, the three curves exhibit a certain 

degree of similarity in shape along the cable length. The section of the cable that 

experiences the maximum bending moment is located 115 meters from the top end, with 

smaller bending moments at the top and anchor ends. Examining the changes in the 

standard deviation of the bending moment under different Poisson's ratios shows that within 

the length ranges of 30m-50m and 140m to the anchor end, the degree of fluctuation in the 

bending moment of the cable is relatively consistent, with the temporal variations in 

bending moment fluctuations being more synchronized in these regions. At distances of 

10m, 110m, and 130m from the top end, the degree of fluctuation in the bending moment is 

more intense and the changes are more abrupt. 
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Figure.4.Curvature Variation of Cables with Different Poisson's Ratios. 

As can be seen from Figure 4,upon examining the variation in bending moment of 

cables under different Poisson's ratios, it is observed that changes in Poisson's ratio exert a 

relatively minor influence on the curvature of the cables. A comparative analysis of the 

minimum values of bending moment and curvature, the maximum values of bending 

moment and curvature, and the average values of bending moment and curvature along the 

length of the cable under different Poisson's ratios reveals a high degree of morphological 

similarity among them. Further comparison of the distribution of the standard deviations of 

bending moment and curvature along the cable length under different Poisson's ratios 

indicates a certain degree of morphological similarity between the two. This suggests that 

the variations in bending moment and curvature are synchronous in the time domain, with 

no lag effect in force application and deformation. 

4.2 The Impact of Linear Density on the Mechanical Performance of Mooring Cables  

  

 

 

Figure.5.Variation in Effective Tension of Cables with Different Linear Densities. 
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From Figure 5, it can be seen that when observing the variation in the effective tension 

of cables with different linear densities, the change in cable linear density has a very 

significant impact on the magnitude of the cable's maximum effective tension. Observations 

of the effective tension at both ends of the cable over time reveal that when the linear 

density of the cable is low, the effective tension at the top end of the cable is greater than 

that at the bottom end. However, as the linear density continues to increase, the effective 

tension at the bottom end becomes greater than that at the top end. The reason for this 

phenomenon is analyzed as follows: when the linear density is low, the cable's mass is 

lighter, leading to greater deformation at the top end due to environmental loads, resulting 

in a more intense stretching effect and consequently a higher effective tension at the top 

compared to the bottom. As the linear density increases, the section of the cable 

experiencing the most intense stretching effect shifts from the top to the bottom, leading to 

a higher effective tension at the bottom end compared to the top end. The distribution of the 

maximum, minimum, and average values of effective tension along the cable's length 

further corroborates the validity of this conclusion. 

Further examination of the distribution of the standard deviation of effective tension 

along the cable's length under different linear densities shows that the degree of fluctuation 

in effective tension decreases sequentially within the 0m-40m length range of the cable. 

Moreover, under different linear densities, the degree of fluctuation in effective tension 

remains stable from the 40m length to the anchor end. Changes in linear density have a 

noticeable impact on the degree of fluctuation in effective tension, with an initial increase 

followed by a decrease in the intensity of tension fluctuations as the linear density 

increases. 
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Figure.6.Variation in Bending Moment of Cables with Different Linear Densities. 

Observing the variation in the bending moment of cables with different linear densities 

through Figure 6, it can be seen that the change in linear density has a relatively significant 

impact on the bending moment of the cables. The distribution of the maximum bending 

moment along the cable length suggests that the maximum bending moment initially 

increases and then decreases with an increase in linear density. The distribution of the 

minimum bending moment along the cable length indicates that, throughout the simulation 

time domain, when the bending moment at any position along the cable is at its minimum, 

the minimum bending moment at any location of the cable with a linear density of 0.16t/m 

is greater than the corresponding minimum bending moment at the same location for other 

linear densities. Further examination of the distribution of the minimum bending moment 

along the cable length with a linear density of 0.16t/m reveals that within the 0-40m length 

range, the minimum value of the cable bending moment remains constant; within the 

40m-145m length range, the minimum value of the cable bending moment increases 

linearly; and within the 145m-anchor end length range, the minimum value of the cable 

bending moment increases sharply. For the remaining linear densities, the minimum 

bending moment along the cable length varies little and is essentially equal. The 

distribution of the standard deviation of the bending moment along the cable length under 

different linear densities indicates that as the linear density of the cable increases, the 

degree of fluctuation in the bending moment changes with the linear density, exhibiting a 

certain degree of randomness.  

 

 

Figure.7.Curvature Variation of Cables with Different Linear Densities. 

By comparing and observing in Figure 7 the variation in curvature and the distribution 

of bending moment variation along the length direction of cables with different linear 
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densities, it can be seen that as the linear density increases, there is a certain difference in 

the shapes of the two. This indicates that the changes in bending moment and curvature are 

not synchronous in the time domain, and there is a lag effect in force and deformation. 

 4.3The Impact of Elastic Modulus on the Mechanical Performance of Mooring Cables  

 

  

  

Figure.8.Variation in Effective Tension of Cables with Different Elastic modulus. 

Observing the variation in the effective tension of cables with different elastic moduli 

in Figure 8, it can be seen that as the elastic modulus increases, there is a slight fluctuation 

in the effective tension of the cables, but the change is not significant. 
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Figure.9.Bending Moment Variation of Cables with Different Elastic modulus. 

Observing the variation in the bending moment of cables with different elastic moduli 

in Figure 9, it can be seen that as the elastic modulus increases, the maximum and 

minimum values of the bending moment that the cables can withstand remain essentially 

unchanged. However, when the elastic modulus is 100,000 Pa, there is a noticeable change 

in the average value of the cable bending moment. This indicates that when the elastic 

modulus increases to 100,000 Pa, the entire cable experiences a relatively larger bending 

moment in the time domain. 

 

 

Figure.10.Curvature Variation of Cables with Different Elastic modulus. 

Observing the variation in the bending moment of cables with different elastic moduli 

in Figure 10, it is observed that as the elastic modulus increases, the maximum, minimum, 

and average values of curvature along the length of the cable remain essentially unchanged. 

This suggests that the bending loads experienced by the cable and the resulting bending 

deformations are not entirely synchronous in the time domain, indicating a subtle lag effect 

between force application and deformation. 
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5. Conclusions 

Observations regarding the variation in effective tension of cables under different 

Poisson's ratios reveal that changes in Poisson's ratio have a minimal impact on the 

effective tension of cables, with the curves of effective tension under different Poisson's 

ratios being highly coincident. Similarly, the influence of Poisson's ratio changes on the 

bending moment of cables is relatively minor. Variations in bending moment and curvature 

of cables under different Poisson's ratios are synchronous in the time domain, with no lag 

effect observed between force application and deformation. 

Alterations in the linear density of cables significantly affect the changes in effective 

tension and bending moment of the cables. As the linear density increases, the variations in 

bending moment and curvature of the cables exhibit an asynchronous trend in the time 

domain, indicating a lag effect between force application and deformation. Changes in the 

elastic modulus (within 100–100,000 Pa) primarily influence the average bending moment 

of cables, as shown in Figure 9. 

Among the variations in Poisson's ratio, linear density, and elastic modulus, changes in 

linear density have the most pronounced impact on the mooring mechanical characteristics 

of cables. The influence of elastic modulus changes ranks second, while changes in 

Poisson's ratio have the weakest effect on the mooring mechanical performance of cables. 
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