
 

 

Engineering 
Solutions to 
Mechanics, Marine 
Structures and 
Infrastructures 

Eng. Solut. Mech. Mar. Struct. Infrastruct.  

2024.1(2).1 

ISSN：2960-0979 

https://doi.org/10.58531/esmmsi/1/2/1 
 

Citation: Zhang D., Zhao B., Yang Y., Zhu K., Jiang H. Numerical Modelling and Dynamic Analysis of Ocean Towed Cable-array System 

under Munk Moment during Turning Maneuver. Eng. Solut. Mech. Mar. Struct. Infrastruct., 2024, 1(2), doi: 10.58531/esmmsi/1/2/1 

ISSN/© By the Author(s) 2024, under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0 

Article  

Numerical Modelling and Dynamic Analysis of Ocean Towed 

Cable-array System under Munk Moment during Turning 

Maneuver 

Dapeng Zhang1, Bowen Zhao2*, Yang Yang1, Keqiang Zhu3, and Haoyu Jiang4 

1 Ship and Maritime College, Guangdong Ocean University, 524088, Guangdong Zhanjiang China;  
2 Department of Applied Mathematics and Mathematical Modeling, Saint-Petersburg State Marine 

Technical University, 190121, Saint-Petersburg, Russia; 
3 Faculty of Maritime and Transportation, Ningbo University, 315211, Zhejiang Ningbo, China 
4 School of Electronics and Information Engineering, Guangdong Ocean University, 524088, Guangdong 

Zhanjiang, China 

Academic Editor: Weiwei Wang < zhwangww@ytu.edu.cn> 

Received: 20, March, 2024; Revised: 10, April, 2024; Accepted: 15, April, 2024; Published: 16, April, 

2024 

 

Abstract: The ocean towing system plays an important role in the ocean development 

process. The motion of a towed body is closely coupled with the motion of a towing cable. 

Munk moment coefficient represents the value of Munk moment which is caused by axial 

flow. Munk moment seriously affects the motion stability of towed body. In this paper, 

reference to the parameters of a towed body and by using the lumped mass method, the 

dynamic simulation of a towed cable-array system in single 360° large-radius ship turn has 

been established by OrcaFlex. With the change of different Munk coefficients, the effect of 

real-time response of cable tension and towed body underwater con-figuration have been 

researched. The results show that Munk moment seriously affects the tension and curvature 

of the towed cable, especially the section close to the towed body. The larger the Munk 

moment, the larger the maximum value of the cable tension. This means that the ultimate 

tension on the cable is also larger. The results provide a theoretical basis for the optimal 

design of the towed cable and towed body. 

Keywords: Cable-array system; Dynamic response; Turning maneuver; Munk moment; 

Lumped mass method 
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1. Introduction 

With the development of marine science and technology, ocean towed system is playing 

a more and more important role in many fields, such as ocean monitoring, military detection, 

seabed mapping and naval defense [1,2]. In many types of applications, the systems include 

the towing ship, towed cable and towed body. Normally, the towed body is equipped with 

many types of oceans detecting instruments. The operation of instruments in towed system 

requires that the towed body should be stable during a towing operation. But under real ocean 

environments, the unsteady motion of a towing ship is transmitted down the cable to the 

towed body, resulting in perturbations both of attitude and position relative to the towing 

ship. Depending on the sea state and the response of a towing ship, these perturbations can 

be sufficiently large to throw off the towed body beyond acceptable limits. To maintain the 

attitude of a towed body as stable as possible under different towing conditions is one of the 

major concerns of users[3,4]. 

The study of hydrodynamic characteristics plays an important role in the preliminary 

design of the underwater towed system [5-7]. At present, researchers have done a lot of 

beneficial exploration and research on the hydrodynamic characteristics of the ocean towed 

cable-array system. The experiment and the numerical calculation are two main methods to 

study the motion of ocean towed cable-array system. For example, Kishore et al. 

[8]investigated the loop maneuver of an underwater towed cable-array system. The case 

studies showed that reducing the towed speed during a loop could cause a fast relaxation in 

the towed point tension, which would lead to severe problems. Srivastava and Ganapathy [9] 

conducted an experimental study on the same towed cable-array system. The results showed 

that the effect of a change in loop radius, keeping the towed speed nearly constant, was 

basically felt on the lateral shift of the array. As the loop radius was increased, the lateral 

shift of the array decreased. Gobat and Grosenbaugh [10] described a computer program for 

analyzing the statics and dynamics of a towed cable-array system. The program used the 

generalized-α time integration algorithm, adaptive time stepping, and adaptive spatial 

gridding to produce accurate, stable solutions for dynamic problems. According to the study, 

the nonlinear of the towed cable-array system was strong under waves, currents and wind 

environments. Holmes et al. [11] developed a novel experimental method involving an 

autonomous underwater vehicle (AUV) with a towed hydrophone array. The flow noise was 

a primary concern for the stability of the array. Grosenbaugh [12] studied the dynamic 

behavior of a towed cable system. The towing ship changed from straight towing track to 

stable turning track with constant radius. The dynamics of a single 360° turn and a 180° U-

turn were discussed in terms of the transients of the steady turning maneuver. The results 
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showed the return of the ship to a straight-tow course after a 180° U-turn would cause the 

vehicle to pull out of its turning maneuver more quickly than for the 360° turn. Wang and 

Sun [13] analyzed the damped oscillation of towed cable system in different spiral courses. 

An oscillatory motion of the towed vehicle was found in simulation of spiral towed courses. 

Feng et al. [14] proposed a new approach to design an ideal towed system. A code was written 

to assist in designing the towed system. The governing equation was solved using a 4th-order 

Runge-Kutta numerical method for stable cable. Carey et al. [15] developed an array to 

demonstrate, and quantify the performance characteristics of an autonomous-vehicle towed-

array system. The towed stability of the system enabled the use of the synthetic Hankel 

transform to estimate the modal horizontal wave number spectrum and the identification of 

interface wave speeds at frequencies up to 1000 Hz. The system was shown to provide a 

unique measurement capability for directional noise measurement in shallow water 

environments. Du et al. [16] studied the influence of underwater vehicle flow field on the 

dynamic behavior of towed sonar cable array through numerical method. The results showed 

that the numerical method was reasonable, and the lateral deflection of the towed sonar cable 

array was related to the speeds and the motion modes of the underwater vehicle. The greater 

the speed of underwater vehicle, the smaller the distance between the end and the top of 

towed sonar cable-array. The linear motion and surfacing motion of underwater vehicle 

produced a lateral deflection of the towed cable array at the beginning, while the turning 

motions produced the yaw angle of the array. Zhang et al. [17] investigated the dynamic 

responses of a wave glider with a towed body. The effects of wave parameters were studied. 

The more severe the wave motion, the greater the average velocity and the higher the 

oscillation of heave motion and forward velocity of the towed body, which indicated that the 

marine environment had an obvious influence on the performance of the towed system. Yang 

et al. [18], Yuan et al. [19], and Holmes et al [20]. studied the motion responses of ocean 

towed cable-array system under complex environmental loads. The prediction of dynamic 

response of towed cable-array system becomes more and more difficult with the increase of 

load types. Previous studies have provided strong references for the further dynamic behavior 

exploration of the ocean towed cable-array system [22-24]. 

With rapid development of computer technology, the simulations of complex fluid 

dynamics models become more and more convenient. Numerical calculation methods have 

been widely used in performance analysis of ocean towed cable-array system, which can be 

divided into three categories: finite element method, finite difference method and lumped 

mass method. The finite element method is widely used in engineering calculation. However, 

there will be more elements and nodes as the length of the flexible riser increases when it is 
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applied to the analysis of flexible risers. The increase of the number of elements and nodes 

will lead to the increase of the order of stiffness matrix, and the matrix will have great 

sparsity. Hence, it requires a large amount of calculation time and is not easy to achieve the 

convergence of the computation process. The finite difference method is also a numerical 

method for solving differential equations of subsea pipelines. It deals with differential 

equations, including ordinary differential equations and partial differential equations. The 

finite difference method requires a discrete approximation of the differential, which uses the 

function values of the surrounding points to approximate the differential of the point. The 

advantages of the finite difference method are intuitive and simple. However, it is not suitable 

for engineering problems with complex boundary conditions. Runge-Kutta method is a 

common numerical solution method, which is widely used in solving partial differential 

equations [24,25]. It is often combined with the lumped mass model to calculate the 

governing equations of the cable. The lumped mass method is a special form of finite element 

method. Different from the finite difference method which solves the governing equation 

from the point of view of micro-elements, the lumped mass method directly calculates from 

Newton's second law, approximating the cable as a series of nodes connected by massless 

linear elastic elements, and applying the distributed forces such as gravity and fluid dynamics 

on the distributed nodes of the cable [26-29]. Da Silva et al. [30] proposed a new discreet 

dynamic modeling formalism based on lumped mass method, in which both the tugboat and 

the towed vessel are subject to forces from waves on the sea surface. The continuous 

flexibility of the cable was approximated by a discrete equivalent, formed by rigid links 

connected by fictitious elastic joints that allowed elevation movements. Guo et al. [31] 

proposed a nonlinear numerical model to investigate the dynamic response characteristics of 

the towing cable. It was found that the proposed modeling applied to both high flexible cables 

and low flexible cables. Westin and Irani [32] presented a numerical method of a towed cable 

system based on the Absolute Nodal Coordinate Formulation. The simulated cable behavior 

was reliable compared to small scale experimental measurements. According to the literature, 

the lumped mass method is widely used in cable dynamic analysis for its clear physical 

meaning and easy-programming [33]. 

The towed body is modeled as a rigid body with six degrees of freedom, which is 

subjected to complex ocean environmental loads under water, such as current, turbulence, 

waves, etc. Munk moment refers to the couple of two equal and opposite forces generated by 

an object moving at a certain angle of attack (or drift) in a steady straight line in an ideal fluid 

on the front and rear halves. Munk moment may make the towed body unstable in 

simultaneous surge and sway motions [34,35]. Hakamifard and Rostami [36] calculated the 
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added mass coefficients for computation of Munk moment using analytical formulation in 

potential flow. The Munk moment of numerical simulation and analytical formulation was 

compared. The Munk moment seriously affects the motion stability of a towed body [37]. 

However, as can be seen from the brief review of the most advanced research, there are few 

studies on the influence of Munk moment on the hydrodynamic performance of ocean towed 

cable-array systems. Therefore, it is necessary to study the hydrodynamic response of ocean 

towing systems under Munk moment. 

In this paper, the lumped mass method is used to discrete the towed cable into lumped 

mass model. At the same time, with the basis of some assumptions, the relationship between 

the expression of Munk moments in the classical towed body kinematics and the expression 

of Munk moments in the hydrodynamic analysis software OrcaFlex [38] is established. Based 

on the above derivation, combined with the specific parameters of a certain sea condition and 

towed cable system, the hydrodynamic response of the marine cable system under different 

Munk moment coefficients is modeled by OrcaFlex and its motion is calculated by time-

domain coupled dynamic analysis method. The rest of this paper is organized as follows. 

Section 2 introduces the lumped mass method and the expression of Munk moment. Section 

3 presents the numerical model and verifies the correctness and reliability of the lumped mass 

method. Section 4 presents the results and discussion. Finally, the conclusions drawn from 

this paper is presented in Section 5. The results provide a theoretical basis for the optimal 

design of the towed cable and towed body under the action of hydrodynamic moment. 

2. Methodology 

2.1 The lumped mass method 

The towed cable model is seemed as a slender, flexible cylindrical cable. The discrete 

lumped mass model is used to solve the nonlinear boundary value problem. The basic idea 

of this model is to divide the towed cable into N segments, and the mass of each element is 

concentrated on one node, so that there are N+1 nodes. The tension T and shear V acting at 

the ends of each segment can be concentrated on a node, and any external hydrodynamic load 

is concentrated on the node. The motion equation of i-th node (i=0, 1…N) is [39,40]: 

 
1 1i i i ii i i i is
− −= − + + − + 

A e e dI
M R T T F V V w  (1) 

Among them, R represents the node position of the cable. 

2 2

1( 1) ( 1)( )
4 4

i i i an i i an i is m D C s D C
 

−

 
=  + − −  −  

 
AiM I  

is the mass matrix of a node, I is the 
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3×3 identity matrix; 0i

ei i

i

s
T EA EA

s



= =


, which stands for effective tension at a certain node; 

( )0 0 1is L N = − , which represents the original length of each segment; 1i i is R R + = − , the 

stretched length of each segment; EA, axial stiffness of the cable. 

idIF   represents the external hydrodynamics [41] of each node, which is calculated 

according to the Morison equation: 

 
1 1i i i ii i i i is
− −= − + + − + 

A e e dI
M R T T F V V w  (2) 

Where ρ is the density of sea water, Di is the diameter of each cable, Cdni is the normal 

drag coefficient, Cdti is the tangential drag coefficient, Cani is the inertia coefficient. 

1 1

2

1

( ) ( )i i i i+1 i i i-1 i i i i+1
i

i i i i

EI EI H

s s s s   

+ +

+

    
= − +

   
V

       

, V represents the shear force at the 

node, H is the torsion. 

2.2 Expression of Munk moments 

2.2.1 Basic assumptions 

Slender bodies in near-axial flow experience a destabilizing moment called the Munk 

moment. In order to derive the Munk moments, the following assumptions are made: 

(1) The towed body is considered as a rigid body; 

(2) The shape of the towed body is symmetric with respect to the xOy plane and the xOz 

plane. In the calculation of the additional mass, the asymmetry of the xOz plane that may be 

caused by the geometric shape of the towed body is ignored; 

(3) the inertial product of the towed body is not taken into account, that means 

Jxy=Jyx=Jxz=Jzx=Jyz=Jzy=0; 

(4) The towed body is completely submerged in the fluid medium and in a fully wet 

state; 

(5) The change of the mass and mass distribution of the towed body in the course of 

navigation is negligible; 

(6) Without considering the earth's autobiography and the curvature of the earth, the 

ground coordinate system is regarded as the inertial coordinate system. 

2.2.2 Coordinate system 

Inertial coordinate system O0x0y0z0, O0 is the coordinate origin; Oxyz towed body 

coordinate system, Ox1y1z1 velocity coordinate system, both for which the coordinate origin 

is taken at the center of buoyance O. 
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2.2.3 Definition of kinematic parameters 

(1) Position coordinates and velocity: 

 
 0 0 0, ,

T
r x y z= , , ,

T

x y zv v v v =   , 0 0 0 0, ,
T

x y zv v v v =    (3) 

(2) Attitude angle and angular velocity: 

 
 0 0 0, ,

T
r x y z= , , ,

T

x y zv v v v =   , 0 0 0 0, ,
T

x y zv v v v =    (4) 

(3) Rudder angle and trajectory angle: 

 
 0 0 0, ,

T
r x y z= , , ,

T

x y zv v v v =   , 0 0 0 0, ,
T

x y zv v v v =    (5) 

(4) Angle of attack α and sideslip angle β 

Angle of attack α: the angle between the projection of the Ox1 axis of the velocity 

coordinate system in the xOy plane of the towed body coordinate system and the Ox axis of 

the towed body coordinate system. 

Sideslip angle β: the angle between the Ox1 axis of the velocity coordinate system and 

the xOy plane of the towed body coordinate system. 

2.2.4 Kinetic equation and kinematic equation 

The equations of motion of the towed body includes kinetic equations and kinematic 

equations. The kinetic equation of the rigid body is used to describe the relationship between 

the force, acceleration and angular acceleration of the rigid body, the kinematic equations 

describe the dynamic relationship between the spatial position and the attitude and velocity 

and angular velocity. 

According to the momentum theorem and the theorem of moment of momentum, the 

kinetic equation of the towed body can be obtained (The towed body has a small maneuver, 

the second order term of the moving parameter of the towed body is ignored, and the centroid 

position is the first order). 

 
 0 0 0, ,

T
r x y z= , , ,

T

x y zv v v v =   , 0 0 0 0, ,
T

x y zv v v v =    (6) 

 
( ) ( ) ( )2

22 26

1
cos cos

2
e z

y c z x z y y e y zm v mx mv v S C C C G
          + + + + = + + −   (7) 

 
( ) ( ) ( )2

33 35

1
cos sin

2

yr

z c y x y z z r z ym v mx mv v S C C C G
         + − + − = + + +   (8) 

 
( ) ( ) (

) ( )

2

44

1

2

cos sin cos

d xr

y

xx x x c y c z x x r x d x x

x y c c xp

J mv y z v SL m m m m

m G y z M

 



        

   

+ − + = + + + +

+ + + 

 (9) 
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( ) ( ) (

) ( )

2

55 35

1

2

cos sin sin

xr

y

yy y c z c x y y y r y x

y y c c

J mx v mx v v SL m m m

m G x z





       

   

+ − − + = + + +

− +

 (10) 

 
( ) ( ) )(

( )

2

66 26

1

2

sin cos cos

e z

zz z c y c x z z z e z z

c c

J mx v mx v v SL m m m

G y x

        

  

+ + + + = + + +

−

 (11) 

Where m is the mass of towed body; λ is the added mass; v̇x, v̇y, v̇z, respectively, the 

acceleration of the towed body in m along the towed body coordinate system direction of x, 

y, z; T is the propulsive force; CxS is the drag coefficient of the maximum cross section S as 

the characteristic area; ρ is the density of sea water; S is the maximum cross-sectional area; 

ΔG=G-B, the negative buoyancy of the towed body; xc, yc, zc, the centroid position 

coordinates; ω̇x, ω̇y, ω̇z, respectively, angular accelerations along the x, y, z directions of 

the towed body in the towed body coordinate system; Cy
α
, Cy

δe, respectively, the derivative 

of the lift factor of the towed body with respect to the angle of attack α and the derivative of 

the position with respect to the horizontal rudder angle δe; Cz
β

, Cz
δr , respectively, the 

derivative of the side force factor with respect to the sideslip angle β and the derivative with 

respect to the vertical rudder angle δr; Cy
ω̅z, the dimensionless factor of the lift force for the 

rotational derivative of the angular velocity ωz; Cy

ω̅y
, the dimensionless factor of the lateral 

force for the rotational derivative of the angular velocity ωy; ω̅, the dimensionless angular 

velocity ω; mx
β
, my

β
, respectively, the position derivatives of the roll moment factor and yaw 

moment factor with respect to the sideslip angle β; mz
α, the position derivative of the pitching 

moment factor of towed body with respect to the attack angle α; mx
δr, mx

δd, respectively, the 

position derivatives of the roll moment factor of the towed body with respect to the vertical 

rudder angle δr and the differential rudder angle δd; my
δr, the derivative of the yaw moment 

factor with respect to the vertical rudder angle δr; mz
δe, the derivative of the pitching moment 

factor to the horizontal rudder angle δe; mx
ω̅x, mx

ω̅y
, respectively, the rotational derivatives of 

the rolling moment factor with respect to ωx and ωy; my
ω̅x, my

ω̅y
, respectively, the rotational 

derivatives of the yaw moment factor with respect to ωx and ωy; mz
ω̅z, the rotational derivative 

of the pitching moment factor with respect to ωz; L, length of the towed body. 

The kinematic equations describe the dynamic relationship between the spatial position, 

the attitude, the velocity and the angular velocity. In this paper, the kinematic equations are 

established according to the coordinate system and the transformation matrix. 

 sin cosy z    = +  (12) 

 sec cos sec siny z      = −  (13) 
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 tan cos tan sinx y z       = − +  (14) 

 ( ) ( )0 cos cos sin sin sin cos cos sin cos sin cos sinx y zx v v v           = + − + −  (15) 

 0 sin cos cos cos sinx y zy v v v    = + −  (16) 

 ( ) ( )0 cos sin cos sin sin sin cos cos cos sin sin sinx y zz v v v           = − + + + −  (17) 

 
2 2 2 2

x y zv v v v= + +  (18) 

 ( )arctan y xv v = −  (19) 

 ( )2 2arctan z x yv v v = +  (20) 

 sin sin cos cos cos cos sin cos cos sin sin          = − −  (21) 

 
sin cos sin cos cos cos cos sin sin cos

sin sin cos sin cos cos cos sin sin sin sin sin

       

           

  = + +

− +
 (22) 

 sin cos sin cos sin cos cos sin sin cos sin cosc            = − +  (23) 

Where �̇� , the pitching angular velocity; �̇� , the yaw angular velocity; �̇� , the roll 

angular velocity; �̇�0 , �̇�0 , �̇�0 , the velocities of the towed body in the ground coordinate 

system along the direction of x, y, z, respectively. 

2.2.5 Munk moment 

By solving the above 23 equations, the whole motion parameters of the space motion of 

the towed body are obtained, in which the Munk moment is applied to the kinetic equation 

of the towed body in the form of its dimensionless position derivative of the motions state. 

The forces of the ideal fluid on the towed body are composed of three parts of linear 

superposition, which are the ideal fluid forces and moments due to the unsteady motion of 

the towed body, the constant rotation and the steady motion of the towed body. 

 ( ) ( )
( ) ( )

( ) ( )

2 2

22 33 32 23 21 31

2 2

33 11 13 31 32 12

2 2

11 22 21 12 13 23

ix y z y z z y x

iy z x z x x z y

iz x y x y y x z

M v v v v v v v

M v v v v v v v

M v v v v v v v







     

     

     

 = − − + + −


= − − + + −


= − − + + −

 (24) 

With the assumption, the Munk moment formula can be expressed as follows: 

 
( )
( )
( )

22 33

33 11

11 22

ix y z

iy z x

iz x y

M v v

M v v

M v v







 

 

 

 = −


= −
 = −

 
(25) 
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As the angle of attack 

arctan x

y

v

v
 = −

, the sideslip angle 
2 2

arctan z

x y

v

v v
 = −

+
, assuming 

that the angle of attack and sideslip angle are small, the Munk moment can be rewritten as 

the following: 

 

 
22 33

2

33 11

11 22

sin 2 0 0 0 0
1

0 sin 2 0 0 0
2

0 0 sin 2 0 0

M v

  

  

  

−   
   

=  −
   
   −   

 
(26) 

From the above deduction, the Munk moment is actually proportional to the 
2v , sin(2α) 

and sin(2β) and λMM, which is consistent with the expression of the Munk moment 

M=
1

2
·Cmm·M·sin(2α)·v2 given in the commercial software OrcaFlex. Here, λMM is the M·Cmm, 

the product of the Munk moment coefficient Cmm of the OrcaFlex and the mass of the water 

currently displaced by the towed body M. Therefore, in this paper, OrcaFlex is used to 

establish the model of the towed cable-array under different Munk moment coefficients 

during turning maneuver. 

3. Numerical model set-up 

The main sea boundary conditions for the system are as following. The depth of the sea 

is 1500m. The current speed is 0m/s. The vessel speed is 3m/s. The turning angular velocity 

is 0.45 deg/s. To simplify the numerical model, the total simulation time is 1600s. The towed 

body is modelled by the 6D buoy. The diameter of the cable is 0.5m. The axial stiffness of 

the cable EA is 6000KN. The bending stiffness EI is 0. The linear density is 0.0011t/m. To 

ensure the stability of the towed system, the towed ship will first tow the cable for 450s, so 

that the towed system can reach the initial balance of its position and speed before turning. 

Figure 1 depicts the towed cable-array system under Munk moment. The diagram of towed 

body in OrcaFlex is shown in Figure 2. The modeling in OrcaFlex is realized through 

mathematical model. Therefore, the complex curvature of the towed body in Figure 1 can 

only be replaced by a simplified cylinder. The four yellow flaps represent the tail rudders of 

the towed body, which are used to control the steering of the towed body. The dark blue 

background represents the sea level, and the brown background represents the seabed. The 

basic parameters of the towed body are shown in Table. 1 and Table 2. 

In order to verify the correctness of the lumped mass method, a towed cable based on 

the mathematical formulation above is taken [42]. The calculation results are compared with 

the previous results. The towed cable includes three sections: cable, array, drogue. The 

properties of the towed cable are shown in Table. 3. The towed cable-array system used for 

validation is shown in Figure 3. Point A which is located at 8.2 m of the array section is 

selected to make some comparisons between the lumped mass model and the previous 
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research. The variations of depth of point A are compared to the results of Gobat [43] and 

Ablow [44]. Figure. 4 indicates that the results from the lumped mass model are consistent 

with the previous work. All the comparisons have validated the lumped mass method. 

 
Figure. 1. The towed cable-array system under Munk moment. 

 
Figure. 2. The diagram of towed body in OrcaFlex. 

Table 1. The basic parameters of the towed body. 

Mass(t) 
Mass moments of Inertia(t.m2) Total 

Length(m) 

Centre of Mass(m) 

Ix Iy Iz x y z 

1.5 0.1 5 5 3.9 0 0 0 

Table 2. The basic parameters of the towed body structure. 

Cylinder segment 
Inner diameter (

m) 

Outer diameter (

m) 

Length(

m) 

Cumulative Length(

m) 

1 0 0.2 0.1 0.1 
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2 0 0.35 0.3 0.4 

3 0 0.5 1.0 1.4 

4 0 0.5 1.0 2.4 

5 0 0.4 1.0 3.4 

6 0 0.2 0.5 3.9 

Table 3. Characteristics of towed cable system for validation. 

Parameter Cable Array Drogue 

Length(m) 723 273.9 30.5 

Mass per length(kg/m) 1.5895 5.07 0.58 

Wet weight per length(N/m) 2.33 0 0.57 

Diameter(m) 0.041 0.079 0.025 

Axial stiffness EA(N) 1×108 1×108 5×106 

Bending stiffness EI(N.m) 1000 1000 0.01 

ρw 2 1.8 1.8 

 

Figure. 3. Validation model for the lumped mass method. 

 

Figure. 4. Validation results for the lumped mass method. 

4. Results and discussion 

4.1 The tension of the towed cable under different Munk moment coefficients 
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Figure 5 shows the cable tension under different Munk moment coefficients from Cmm=0 

to Cmm=1.2. With the increase of Munk moment coefficient, the tension of the towed cable is 

not always on the increase. When Munk moment coefficient increases from 0 to 0.1, the 

tension of the towed cable along the length direction increases significantly. When Munk 

moment coefficient continues to increase to 0.2-0.3, the tension of the towed cable along 

length direction begin to reduce by small amplitude. When Munk moment coefficient 

increase to 0.4, the tension along the length direction increases by large amplitude. When 

Munk moment coefficient increases to 0.4-0.6, the tension along the cable length direction 

decreases in turn. When Munk moment coefficient increases to 0.7, the tension along the 

length direction increases again, and when Munk moment coefficient continues to increase 

to 0.7-0.9, the tension along cable length direction again decreases in turn. When Munk 

moment coefficient increases to 1, the tension along the length direction increases greatly. 

When Munk moment coefficient increases to 1-1.2, the tension along the cable length 

direction does not decrease, but continues increasing in turn. 

The reason for this phenomenon is that when Munk moment coefficient is small, the 

drag force caused by Munk moment makes the underwater towed body rotate. The flow 

facing surface area change constantly, sometimes large, sometimes small. When it is large, 

the drag force and the damping force on the towed body of the current would become larger, 

which makes the towline tension larger. When Munk moment coefficient continues to 

increase, Munk moment and some other moments on the towed body make the towed body 

rotate to a certain state, no longer have the rotation. The flow facing surface area also no 

longer change, thus making this drag force and damping force of water flow do not change, 

then make the distribution of the tension along the cable length direction to a certain extent, 

and the tension do not change any more in such a state. 

 

Cmm=0.0                  Cmm=0.1                  Cmm=0.2 
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Cmm=0.3                  Cmm=0.4                  Cmm=0.5 

 

Cmm=0.6                  Cmm=0.7                  Cmm=0.8 

 

Cmm=0.9                  Cmm=1.0                  Cmm=1.1 

 

Cmm=1.2 

Figure. 5. The minimum, maximum and mean tension of the cable under different 

Munk moment coefficients ranging from 0-1.2. 

4.2 The curvature of the towed cable under different Munk moment coefficients 
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Figure 6 shows the cable curvature under different Munk moment coefficients form 

Cmm=0 to Cmm=1.2. To observe the changes of the curvature along the length direction of the 

towed cable, it can be found that the curvature doesn’t increase with the increasing of Munk 

moment coefficient. When Munk moment coefficient increases from 0 to 0.9, the curvature 

of the towed cable is approximately 0 from 0m-800m. The curvature goes up quickly from 

800m-1000m, and then the curvature in the vicinity of 1000m rapidly becomes 0. And with 

Munk moment coefficient increases, the curvature changes with cyclic variation. When 

Munk moment coefficient are 1-1.2, at the curvature along the towed cable length everywhere 

are minimal, approximately 0, especially near the towed body. The reason for this 

phenomenon is that when Munk moment coefficient is small, the resistance of Munk moment 

causes the towed body to rotate, and the surface area of the water flow surface changes, which 

leads to the torsion and twining cycle of the cable. If Munk moment coefficient continues to 

increase to a large value, the large Munk moment makes the towed body have a trend away 

from the cable, and the cable is straightened and keeps being stretched the straightened state. 

 

Cmm=0.0                  Cmm=0.1                  Cmm=0.2 

 

Cmm=0.3                  Cmm=0.4                  Cmm=0.5 
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Cmm=0.6                  Cmm=0.7                  Cmm=0.8 

 

Cmm=0.9                  Cmm=1.0                  Cmm=1.1 

 

Cmm=1.2 

Figure. 6. The minimum, maximum and mean curvature of the cable under different 

Munk moment coefficients ranging from 0-1.2. 

4.3 Variety of depth and elevation angle of towed body and tension at the towing end in time 

domain 

Figure 7 depicts the depth and elevation angle of the towed body and tension at the 

towing end during turning maneuver. Before 1200s, the depth of the towed body drops, which 

indicates that the towed body is sinking in this stage. Correspondingly, the towing cable is 

under tension, and the tension at the towing end is maintained at about 8kN. The variety of 

elevation angle indicates that the whole towed cable-array system is stable. The change of 

Munk moment has little effect on the attitude of the towed body and the tension at the towing 

end. 

 

Figure. 7. The minimum, maximum and mean curvature of the cable under different 

Munk moment coefficients ranging from 0-1.2. 
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4. Results and discussion 

In this paper, a numerical model of a towed cable-array system is established using 

lumped mass method to study the hydrodynamic characteristic under the Munk moment 

during turning maneuver. This study demonstrated the following: 

(1) The effect of Munk moment on the tension of the towed cable is mainly concentrated 

on the maximum value. The greater the Monk moment, the greater the maximum value of 

the cable tension. This means that the ultimate tension on the cable is also greater. Therefore, 

when the towed body encounters Munk moment, maximum value shall be paid attention to 

in the design of the cable. 

(2) When Munk moment is small, Munk moment makes the towed body rotate, and the 

area of the upstream surface constantly changes. When the area of the upstream sur-face is 

larger, the drag force and damping force on the towed body acted by the current are larger, 

which lead to the larger tension of the towing cable. When Munk moment coefficient 

continues to increase, under the action of Munk moment and other moments, the towed body 

first rotates to a certain state and then stops rotating. The area of the upstream surface will 

not change, so that the drag force and damping force will not change at this time. In this state, 

the tension distribution along the cable length direction will not change after increasing to a 

certain extent.  

(3) The effect of Munk moment on the curvature of the towed cable is mainly 

concentrated on the position near the towed body. When Munk moment is small, the 

curvature along the length direction of the towed cable changes with cyclic variation. When 

Munk moment is large enough, the curvature along the towed cable length is minimal, 

approximately 0, especially near the towed body. At this time, the towed body tends to be far 

away from the cable, and the cable is tensioned and straightened. The space attitude and 

relative position of the towed body in the water will not change, which means that the shape 

of the cable at this time will also not change, and it will remain tensioned and straightened. 

It should be noted that in order to simplify the calculation model and shorten the 

calculation time, this paper mainly considers Munk moment suffered by the towed body, but 

does not consider Munk moment suffered by the cable. In the next step of research, this will 

be further studied. 
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