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Abstract: This article presents a comprehensive review of the unified framework for the 

equivalent single layer theories of composite beams, plates and shells. First, the approach to 

unified displacement fields has two main categories: one is to start from the assumption of 

linear displacement field variables. And the another is to start from the assumption of 

transverse strains and transverse displacement variable. In terms of unified shape functions, 

the shape function is defined as the function that exist in the transverse strain rather than the 

in-plane displacement variables. Moreover, the basic requirements for the choose of shape 

functions are also given and analysed in this paper. The unified shape functions are 

introduced in terms of the several functions and the unified polynomial model. In addition, a 

construction method for new shear strain shape functions is described in this review. Finally, 

the current research progress and future prospects are also given. 

Keywords: Unified model; Equivalent single layer theory; Composite structures 

 

 

1. Introduction 

The composite beams, plates and shells are the basic units of ship and marine composite 

structures. For example, composite laminates and sandwich panels have many advantages, 
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such as light weight, corrosion resistance, high strength, high damping, high designability, 

sound absorption, sound transmission and fatigue resistance [1–10]. Therefore, the static 

bending, vibration and buckling characteristics of composite beams, plates, and shells have 

been widely studied, and these characteristics often require the prediction of the static and 

dynamic characteristics of composite beams, plates, and shells by experimental, numerical, 

and theoretical methods. 

The modeling methods of composite beams, plates and shells mainly include the 

three-dimensional elastic modeling method and the equivalent single layer theory. The 

three-dimensional elastic modeling is to discretize the displacement field of the composite 

plate and shell structures through the idea of finite element method and the three-dimensional 

representative volume elements. The static and dynamic results are calculated using suitable 

solution strategies. However, the three-dimensional refined modeling strategy brings high 

computational cost and response time, which is contrary to the concept of instantaneous 

prediction of structural digital twin, so the low-dimensional modeling method represented by 

the equivalent single layer theory has received wide attention. For composite thin plate 

structures, the effect of the transverse shear function on the prediction accuracy of the 

dynamic properties is negligible, however, for structures such as medium-thick and thick 

beams, plates, and shells, the transverse shear effect needs to be taken into account in order to 

avoid the loss of prediction accuracy. The selection of the transverse shear function is not 

strictly defined, as long as the free boundary conditions for shear stress are satisfied, so the 

selection of the transverse shear function is time-consuming and costly to conducted. 

The best-known unified method in equivalent single layer theories is the Carrera unified 

formulation (CUF) which is first proposed by Carrera [11]. The improved CUF theories are 

suitable for analyzing the global stress distribution in composite laminated structures and 

their applications have been presented in a large number of publications [12–31]. In 2017, 

Abrate and Sciuva [32] compared the existing methods to classify the displacement field 

based on nonpolynomials, polynomials, and the number of unknown variables. The 

advantage of these methods is that it is easy to classify and extend the displacement field, but 

the fixed form is not conducive to the discovery of specially constructed displacement fields. 

In 2016, Nguyen et al. [33] fit all the shear strain shape functions with a unified polynomial, 

and then proposed a new higher-order shear deformation theory based on the unified formula. 

The advantage of this method is that it can unify all the shear shape functions in a simple 

polynomial form but the fitting accuracy may affect the prediction accuracy. In 2020, 

Nguyen et al. [34] classified and summarized the existing composite beam theories and 

proposed a unified composite beam theory. Li et al. [4] proposed a unified composite plate 

theory, which classified the existing theories into three categories from the expressions of 
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shear strains, and new higher-order shear deformation theories can be proposed based on the 

unified plate theory. 

This paper presents the first overview of the unified theory of composite beams, plates 

and shells, and the purpose of this paper is mainly to inspire the reader to construct new 

displacement fields through the current strategy of unified theory. This review paper is 

divided into four different parts. Section 1 describes some of the advantages of composite 

beams, plates and shells and their background in the field of marine and offshore engineering. 

Section 2 describes the unified displacement field and gives two different starting points for 

the unification of linear displacement variables and shear strains. In Section 3, the 

construction method of the unified shear function is presented. Section 4 summarizes recent 

research on the unified theory of composite beams, plates, and shells and provides guidance 

for future research. 

2. The unified displacement fields 

2.1 Starting with the displacement field variables 

In terms of the kinematic assumptions, Abrate and Sciuva [32] used two broad 

categories (polynomials functions and non-polynomials functions) to express the 

displacement fields. In this paper, the displacements u and v are expanded as combined series 

of the transverse coordinate z. In terms of the equivalent single-layer plate theory, it is 

assumed that the generalized displacements (linear displacements, rotations, etc.) at each 

location point within the plate can be described by the reference displacements of the 

midplane, and reduces the computational dimensionality and the number of unknown 

displacement functions by the separation of variables method, which in turn improves the 

computational efficiency, and this method is also used in beams and shells. For example, in 

this section the displacements u, v, w in Cartesian system (x, y, z) are expanded into a mixed 

series of thickness coordinates z as follows: 
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             (1) 

where ui, uj, vi, vj, wi, wi are the unknown displacement functions of the physical middle 

surface, independent of the thickness coordinate z. The equivalent single layer theory is 

usually divided into two broad categories. In the first class, the displacement field is 
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represented by a polynomial function in the thickness coordinate z, while in the second class, 

a non-polynomial function is used to describe it. 

2.1.1 Polynomial displacement fields 

Simple polynomials or orthogonal polynomials can be developed by expanding the 

displacement as a power series of the thickness coordinate z form [32]. The theory of simple 

polynomials is a special case of Eq. (1) when ignoring the second term in Eq. (2) is ignored. 

2 3

0 1 2 3( , , ) = ( , , )+ ( , , ) + ( , , ) + ( , , ) +...i

iu u x y t z u x y t u x y t z u x y t z u x y t z=  

2 3

0 1 2 3( , , ) = ( , , )+ ( , , ) + ( , , ) + ( , , ) +...i

iv v x y t z v x y t v x y t z v x y t z v x y t z=       (2) 
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iw w x y t z w x y t w x y t z w x y t z w x y t z=  

The above equations can theoretically be extended infinitely (the number of terms N 

tends to infinity). However, this gives highly computational cost due to involving in an 

excessive number of unknown functions and in that case, the advantage of fast operations of 

equivalent single-level theories would be lost. Therefore, the highest power of the power 

series in the above equations is often restricted for simple modeling.  

For beams, only the displacement unknowns v and displacement components y are 

removed on the basis of the above equation, while the other terms remain unchanged, so it 

can be considered that the equivalent single-layer beam theory is a special case of the 

equivalent single-layer plate theory, as follows. 

2 3

0 1 2 3( , ) = ( , )+ ( , ) + ( , ) + ( , ) +...i

iu u x t z u x t u x t z u x t z u x t z=  

2 3

0 1 2 3( , ) = ( , )+ ( , ) + ( , ) + ( , ) +...i

iw w x t z w x t w x t z w x t z w x t z=         (3) 

The polynomial theories are usually classified into Classical plate theory, First-order 

shear deformation theory, Higher order shear deformation theory), etc. Before introducing 

these different polynomial theories, we first The concept of {m,n} theory is explained. The 

parameter m in the {m,n} polynomial theory represents the highest order of z in the 

expression of the in-plane displacement variable u and the highest power of z in the 

expression of the variable v. The parameter n represents the highest power of z in the 

expression of the thickness variable w. in the polynomial theory. For example, the 

polynomial theory u= u0+u1z+u2z
2, v= v0+v1z+v2z

2, w=w0 would be the {2,0} theory. 

2.1.1.1 Classical plate theory 

In continuum mechanics, a large number of plate and shells theories have been proposed 

and developed in decades. The classical plate theory is first proposed by Kirchhoff [35] in 

1850 based on his assumptions and then developed by Love [36] in 1888. They assume that a 
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plane section normal to the mid-surface of plates remain plane and keeps normal during and 

after deformation and thickness of the plates does not change in this process. It is worthwhile 

to mention that the classical plate theory is only applicable to thin plates for the neglect of 

transverse shear deformation effects as well as the moment of inertia. When it comes to the 

moderate thick plates and thick plates, the predicted deflections are underestimated and 

natural frequencies and buckling loads are overestimated [37–39]. 

According to the displacement field listed in Eq. (2), the following strains can be 

obtained as 

20 1 2
1 2 3( ) (2 ) (3 ) +...xz

w w wu w
u u z u z

z x x x x


   
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Based on the assumptions that the thickness of the plates does not change during and 

after the deformation, the strain εzz is equal to zero throughout the thickness of the plate. In 

that case, w1=w2=w3=0.  

In addition, it is assumed that a plane section perpendicular to the mid-surface remains 

plane, normal during and after deformation. Eq. (4) indicates that transverse shear strains εxz 

and εyz are neglected and independent of z (εxz=εyz=0). Therefore, based on classical plate 

theory (or Kirchhoff-Love assumptions), the deformation of the plate is described as follows 

0
1

w
u

x


= −


2 3 ... 0u u= = =  

0
0 ( , , )

w
u u x y t z

x


= −


, 0

0 ( , , )
w

v v x y t z
y


= −


, 0= ( , , )w w x y t         (5) 

2.1.1.2 The first-order shear deformation theory 

The first-order shear deformation theory (also named Reissner–Mindlin plate theory) 

proposed by Reissner [40] and Mindlin [41] is the first and simplest theory to takes into 

account transverse shear deformations throughout the plate thickness, it is assumed that the 

plane section perpendicular to the mid-surface remains plane but not necessarily 

perpendicular to the mid-surface, so it could be considered that this theory is also an 

extension of classical plate theory mentioned in the last section. Though FSDT surmounts 

some limitations of CPT, it also has its own drawback: the linear displacement variation 

throughout the thickness leads to constant transverse shear strains and stresses across the 

plate thickness. However, this phenomenon violates: (1) the stress-free boundary conditions 

on the top and bottom surface of plates; (2) parabolic distribution of transverse shear stresses 
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throughout the thickness. So, the integral of transverse shear stresses based on FSDT 

assumptions are greater than the real values, therefore, a shear correction factor (less than 1) 

is required to properly predict the real mechanical behavior of plates and give acceptable 

analytical results for moderately thick and thin plates. 

In terms of the shear correction factor which should be carefully chosen in all kinds of 

cases, though it is hard to pick up. A constant value of K=5/6 is commonly used in numerical 

studies. Timoshenko [42] presented a shear correction coefficient which is dependent with 

the Poisson ratio v. 

5 5

6 5

v
K

v

+
=

+
                   (6) 

Efraim and Eisenberger [43] then presented a shear correction factor for FGM plates as 

5

6 ( )c c m m

K
v V v V

=
− +

                (7) 

where vc and vm represent the Poisson ratios of pure ceramic and pure metal, Vc and Vm 

denote the volume fractions of ceramic and metal in the entire thickness of the plate. 

Effects of the shear correction coefficients on the natural frequency of the FG plates is 

studied by Zhao et al [44]. They calculated the natural frequencies with different values of 

shear correction coefficients with a constant value of 5/6, and compared those results with a 

HSDT results reported by Matsunaga [45]. The results show that the modified shear 

correction coefficients yield more accurate result than the constant value of shear correction 

coefficients does for a moderately thick (a/h=10) and thick (a/h=5) square FG plates. For a 

thin FG plate, there is no discernible differences found. 

The modified first-order shear deformation theory (MFSDT) proposed by Thai et al. 

[46–48] is an extension of the classical first-order shear deformation plate theory. In MFSDT, 

the transverse displacement w is divided into bending and shear parts (w=wb+ws) and it is 

assumed that ,x b xw = − , ,y b yw = − . The following displacement field is obtained: 

u(x,y,z)=u0(x,y)-zwb,x, v(x,y,z)=v0(x,y)-zwb,y, w(x,y,z)=wb(x,y)+ ws(x,y)       (8) 

2.1.1.3 The second shear deformation theory 

The displacement field of the second-order shear deformation theory has the highest 

order of two. For example, the in-plane displacement variables including linear strains and 

shear strain in the following equation are all quadratic. 

2

0 1 2u u zu z u= + + , 2

0 1 2v v zv z v= + + , 0w w=  

2

0, 1, 2,x x x xu zu z u = + + , 2

0, 1, 2,y x x xv zv z v = + + , 
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2

0, 0, 1, 1, 2, 2,( ) ( )xy y x y x y xu v z u v z u v = + + + + + ,           (9) 

1 2 0,( , , ) 2xz xx y z u zu w = + + , 1 2 0,( , , ) 2yz yx y z v zv w = + +  

In addition, the readers can tell from the Eq. (
1 2 0,2xz xu zu w = + + , 1 2 0,2yz yv zv w = + + ) 

that the transverse shear stresses are linear rather than parabolic throughout the thickness. To 

be specific, 1 2 0,( , , / 2)xz xx y h u hu w  =  + , 1 2 0,( , , / 2)yz yx y h v hv w  =  +  are not always 

equal to zero unless we assume that 

1 2 0,( , , / 2) 0xz xx y h u hu w = + + =  

1 2 0,( , , / 2) 0xz xx y h u hu w − = − + =  

1 2 0,( , , / 2) 0yz yx y h v hv w = + + =              (10) 

1 2 0,( , , / 2) 0yz yx y h v hv w − = − + =  

In that case, 1 0,xu w= − , 1 0, yv w= − and 2 2 0u v= = . Therefore, the SSDT that satisfies 

the stress-free boundary condition degrades to the CPT in Eq. (5). Therefore, it could be 

considered that the SSDT is also an extension of Kirchhoff–Love plate theory that does not 

take into account stress-free condition on the top and bottom surfaces of the plate. 

2.1.1.4 The third-order shear deformation theory 

Similar to FSDT and SSDT, the “third” in the third-order shear deformation theory 

refers to the highest number of in-plane transverse displacements u, v with respect to z. It can 

be divided into [3,n] theories based on the construction of transverse displacement w, where 

n is the highest number of times z in transverse displacement w. For instance, in the [3,0] 

theory, the thickness stretching effect is not considered and εzz=0. In the [3,1] theory, εzz =w1 

is a constant, which represents that the thickness stretching is constant throughout the 

thickness direction. In the [3,2] theory, εzz = w1+2z w2 is a constant representing that the strain 

is linear throughout the thickness direction. In the [3,3] theory εzz = w1+2zw2+3z2w3, which 

has a quadratic variation throughout the thickness of the beams, plates and shells. For 

example, Ref. [49] describes how to construct the [3,2] theory and then eliminate the 

redundant unknown functions by means of the stress-free condition, and finally the 

simplified displacement fields are obtained. 

2.1.1.5 Other polynomial shear deformation theories 

Other higher order shear deformation theories improve accuracy by increasing the 

number of displacement field variables, but also bring additional computational time. 
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According to the Ref. [50], the computational accuracy converges as the order increases. The 

fourth-order shear deformation theory is more accurate than the third-order shear 

deformation theory in terms of out-of-plane shear strain, but the accuracy of transverse 

displacement is almost the same. Therefore, higher orders are not necessary because the 

results obtained by the 4th order already almost overlap with the exact solution. 

2.1.2 Non-polynomial displacement fields 

Non-polynomial terms (such as shear functions f(z) in the following equation) are 

introduced in the displacement fields for more accurate predicted results. 

0
0 ( ) x

w
u u z f z

x



= − +


, 0

0 ( ) y

w
v v z f z

y



= − +


, 0w w=         (11) 

Nonpolynomial displacement fields are often categorized by the number of unknowns 

and the shape of f(z) [32]. The number of unknowns is not discussed in detail in this paper, 

and the shape of f(z) is discussed will be discussed in the next section. 

2.2 Starting with the transverse displacements and out-plane shear strains 

Nguyen et al. [34] proposed a novel unified beam model for laminated beams and they 

developed a unified displacement field which can be recovered to that of existing shear 

deformation beam theories reported in the published literature. Only 2D shear deformation 

theory without thickness stretching effects is studied in Ref. [1] for simplicity. 

The stress-strain relationships of the beams are given by: 

1
( , ) ( , )xz xzx z x z

G
 =                (12) 

where G is shear modulus. The linear elastic relationships of strains and displacements 

are expressed by 
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When 0( ) ( )xQ x G x= , 0 0, 0( )xu u zw f z = − + , 0w w=  

When 0 0,

5
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6
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5 ( ) 5 ( )
[ ] ( )

6 6
x

hf z hf z
u u z w x= + − + in Refs. [51–

53]. 

Subsequently, Li et al. categorized the out-plane shear strains of composite plates into 

three types based on the existing literature. The first type contains one displacement variable 

Q1x. The second type contains two displacement variables Q1x and Q2x, and the same shear 
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function g(z). The third type contains two displacement variables and different shear strain 

shape functions. It is easy to notice that the third type can be used as a unified form. 

Type 1: 1( , , ) ( ) ( , )xz x

u w
x y z g z Q x y

z x


 
= + =
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 
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Integrating the equation in Type 3 along the thickness coordinate z yields an expression 

for the line displacement u. Similarly, one can integrate over γyz to obtain an expression for 

the line displacement v. Thus, the unified displacement fields are expressed as: 

0 1 1 2 2( ) ( , ) ( ) ( , )x x

w
u u z f z R x y f z R x y

x


= − + +
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0 1 1 2 2( ) ( , ) ( ) ( , )y y

w
v v z f z R x y f z R x y

y


= − + +


          (14) 

w w=  

where the transverse displacement w is user-defined and is independent of thickness 

coordinate z if the thickness stretching effect is ignored, and if the thickness stretching effect 

is considered for thick plate and shells, the transverse displacement should be expressed as a 

function of thickness coordinate z. 

For instance, when bw w= , 1 ( , ) ( , )x xQ x y x y= , the popular displacement field can be 

obtained [7,39,54–65] as follows. 

0 0, + ( ) ( , )x xu u zw f z x y= − , 0 0, ( ) ( , )y yv v zw f z x y= − − , 0w w=       (15) 

3. Shear strain shape functions 

Many researchers used different type of shear strain shape functions (trigonometric, 

hyperbolic, exponential and combination) to describe shear deformation effect.  

Table 1. Shear strain shape functions in different theories. 

Theories References 

Trigonometric [60] [66-72] 

Hyperbolic [55] [62] [73-76] 

Exponential [77-97] 

Combination [39] [59] [98] 
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In order to construct new shear strain shape functions, Li [99] proposes a construction 

method. First, any even function A(z/h) with an independent variable z/h is given, before 

shifting the even function a distance of A(0.5). Then, resizing the function Along the 

horizontal coordinate axis with a ratio of 1/[A(0)-A(0.5)] to satisfy the basic conditions 

( '(0) 1f = ). Finally, the new shear strain shape function f(z) can be obtained by integrating 

the scaled '( )f z  along the thickness direction, as shown in Fig. 1. 

 

Fig. 1. The construction method for new shear shape functions [99].  

To unify different types of shear strain shape functions, Nguyen et al. [33] proposed a 

unified polynomial formulation to unify all existing shape functions by fitting some critical 

points in the previous functions. However, some potential shape functions might not be easy 

to find due to the limit of these types of functions. Therefore, in future research, the location 

of these control points can be corrected using methods such as deep learning to obtain more 

accurate shear strain shape functions. 

4. Conclusion 

This review provides an overview of the unified framework of equivalent single layer 

theory for composite beams, plates and shells in terms of displacement fields and shear strain 

shape functions, respectively. This helps the readers to get more accurate displacement fields 

using the mentioned unified theory. For composite beams, plates and shells, traditional 

methods such as classical plate theory and first order shear deformation theory are 

sufficiently accurate. For thick ones, transverse shear effects and thickness stretching effects 

need to be taken into account, so more accurate equivalent single layer theories are studied. 

Current references focus on obtaining predictive solutions for bending, free vibration, and 

buckling loads and comparing them with elastic solutions to assess the accuracy of the 

applied theory. The literature show that the accuracies of the majority of theories are 

satisfactory, so further investigation is needed only for new materials and new structural 

forms. In addition, the fourth-order polynomial displacement field has a good convergence 
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and more orders are not suggested. The non-polynomial displacement field relies on the 

search for the shear function. However, the mathematical functions are still limited for better 

shear strain shape functions. Therefore, the more accurate description of the shear function 

may depend on the use of new technologies and methods such as machine learning. 
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